## 平成30(2018)年度 遺伝子組み換え実験安全部会 自己点検評価

### 1) 年度当初の目標<P>

目標は、遺伝子組み換え実験が安全に行われるように、遺伝子組み換え実験計画の審査を厳格に行うこと、および規程等の改訂を行うことである。

### 2) 目標の実施状況<D>

本年度、遺伝子組み換え実験安全部会の委員構成を以下に記した。事務局からは総務課長を含めて3名が参加した。

遺伝子組み換え実験等に関して識見を有する者 山田一哉、河野史倫、澤柿教淳、川島均

倫理等の学識経験を有する者 福島智子

学長から任命された安全主任者 浅野公介

### a) 遺伝子組み換え実験計画の審査について

今年度分機関承認実験計画1件と、次年度に向けて6件を審査した。

### 【第18-07号(機関承認実験)】

実験管理者:健康科学研究科 木藤伸夫教授

実験課題名:不飽和脂肪酸の寿命への影響を、キイロショウジョウバエのインス リン受容体変異体を用いて調べる

場所名称:動物飼育室、微生物実験室内飼育用インキュベーター

実験種類:動物接種実験

実 験 期 間: 平成 30 年 9 月 1 日~平成 31 年 3 月 31 日

実験目的: 不飽和脂肪酸を餌に加えるとキイロショウジョウバエの寿命が極端 に短くなることを明らかにしたが、この寿命の変化にインスリンシグ ナルが関与しているか調べる。

#### 【第19-01号(機関承認実験)】

実験管理者:健康科学研究科 山田一哉教授

実験課題名:高炭水化物食による遺伝子発現調節機構の解析

場所名称:分析機器実験室、微生物実験室

実 験 種 類: 微生物使用実験、動物使用実験

実験期間: 2019年4月1日~2020年3月31日

実 験 目 的: 1) 高炭水化物食による糖質・脂質代謝系酵素遺伝子群の転写調節 機構を明らかにする。 2) 各種遺伝子を過剰発現させるために、その全長 cDNA を含むア デノウィルスを作製し、細胞に感染させ、その作用を調べる。

### 【第 19-02 号 (機関承認実験)】

実験管理者:健康科学研究科 山田一哉教授

実験課題名:新規転写因子ファミリーZHX の生物学的役割の解析

場所名称:分析機器実験室、微生物実験室

実 験 種 類: 微生物使用実験、動物使用実験

実験期間: 2019年4月1日~2020年3月31日

2) ZHX ファミリー、グルコキナーゼ (GCK)、Brd ファミリー、LacZ および EGFP 遺伝子を過剰発現させるために、その全長 cDNA を含むアデノウィルスを作製し、細胞に感染させ、その作用を調べる。

### 【第19-03号(機関届出実験)】

実験管理者:人間健康学部 浅野公介助手

実験課題名: 概日リズム調節因子・メラトニンは血糖上昇ホルモンとして肝臓に 作用するか?

場所名称:分析機器実験室、微生物実験室

実験種類:微生物使用実験

実験期間: 2019年4月1日~2020年3月31日

実験目的: 肝におけるメラトニンによる糖新生系酵素遺伝子の発現調節機構を 解析する。

#### 【第19-04号(機関承認実験)】

実験管理者:健康科学研究科 高木勝広教授

実験課題名:血糖低下作用を示す食品成分のスクリーニングと作用機構の解明

場所名称:分析機器実験室、微生物実験室

実 験 種 類: 微生物使用実験、動物使用実験

実験期間: 2019年4月1日~2020年3月31日

実験目的:1) インスリン様活性を有する食品成分のスクリーニングし、その 作用機構を解析する。

2) 各種遺伝子を過剰発現させるために、その全長 cDNA を含むア

デノウイルスを作製し、細胞に感染させ、その作用を調べる。

## 【第19-05号(教育目的実験)】

実験管理者:健康科学研究科 高木勝広教授

実験課題名:酵母の形質転換

場所名称:共同実験室、微生物実験室

実 験 種 類: 微生物使用実験

実験期間: 2019年7月8日~2020年7月22日

実験目的: お酒の発酵等に用いられる麹菌 (Asperugillus oryzae) 由来のア

ミラーゼ遺伝子を、酵母菌 (Saccharomyces cerevisiae) に導入する。 アミラーゼ遺伝子が導入された酵母はアミラーゼを分泌するように

なることを確認する。

# 【第19-06号(機関承認実験)】

実験管理者:健康科学研究科 河野史倫准教授

実験課題名:筋特性の発生・維持・変化に関わる分子メカニズムの追求

場所名称:動物飼養保管室、動物実験室、微生物実験室

実 験 種 類: 微生物使用実験、動物使用実験

実験期間: 2019年4月1日~2020年3月31日

実験目的: 骨格筋への代謝的刺激、メカニカルストレス、神経活動が、 どのようなメカニズムで筋肥大や代謝特性の変化を引き起こすのか を追求する。

- 3) 点検・評価の結果(目標の達成状況) <C>
- a) 遺伝子組み換え実験計画の審査について

すべての実験計画について審議の結果、規程に沿った実験計画であり、かつ、 従事者が変更されるだけの継続実験であるため、異議なく承認した。それぞれ 審査の結果を申請者と最終責任者である学長に文書で伝達した。

#### 4) 次年度に向けて<A>

本学では遺伝子組み換え実験を行っている研究者が少ないため、詳細にわたって実験計画を審査することができる。次年度も、このような体制で進め、安全に実験が行われるよう努めていきたい。

<執筆担当/遺伝子組換え実験安全部会長 山田一哉>